

- Pierre Ernst, M.D., M.Sc., F.R.C.P.(c)
- Pulmonary physician, JGH
- Professor of Medicine, McGill

Disclosures

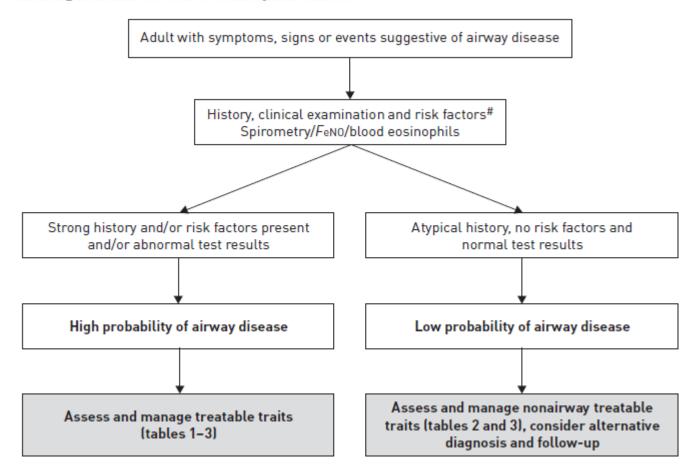
• I receive research funds from CIHR.

• I have not received any financial or in kind contributions from PHARMA in the last 8 years.

• Therefore, the opinions I express are my own.

Learning objectives

- To be aware of the differential diagnosis of common presentations of asthma such as dyspnea, cough and noisy breathing.
- To be aware of which factors in the clinical history are suggestive that respiratory symptoms are likely to be indicative of asthma.
- To recognize the importance of the objective confirmation of the diagnosis of asthma.
- To know what results of objective testing are suggestive that respiratory symptoms are likely to be indicative of asthma.


Case presentation

- A 27 year-old man, IT specialist, occasional vaper of cannabis, presents with the complaint of dyspnea on exertion. He describes difficulty keeping up with his team mates during recreational hockey.
- His girlfriend tells him his breathing is noisy at times. He will experience a productive cough for up to 4-6 weeks following a URTI.
- He has no known allergies. He has never had a severe attack of dyspnea requiring urgent consultation.
- On exam: VS are normal; BMI is 30; there may be some wheezing during forced expiration.
- IS IT ASTHMA?

Treatable traits: toward precision medicine of chronic airway diseases

Alvar Agusti¹, Elisabeth Bel², Mike Thomas³, Claus Vogelmeier⁴, Guy Brusselle^{5,6}, Stephen Holgate⁷, Marc Humbert⁸, Paul Jones⁹, Peter G. Gibson¹⁰, Jørgen Vestbo¹¹, Richard Beasley¹² and Ian D. Pavord¹³

Treatable traits: a label-free, precision medicine approach to the diagnosis and management of chronic airway diseases

Eosinophilic

†Steroids

Anti-eosinophilics (Anti-IgE)

Anti-IL-5 Anti-IL-13 Anti-TSLP Anti-IL-33 CRTH2 antagonists

Neutrophilic

Steroid-resistant

Anti-neutrophilics Macrolides

CXCR2 antagonists
Anti-TNF
Anti-IL-1
Inflammasome inhibitors
Anti-IL-17/23
p38 MAPK inhibitors
PDE4 inhibitors

Paucigranulocytic

Steroid-resistant

LAMA+LABA combo Triple combo

Bronchial thermoplasty

Asthma Diagnosis

- Audible wheezing is not a good indicator of asthma.
- Significant airways obstruction may be present in the absence of wheezing on auscultation.
- The diagnosis of asthma requires the demonstration of variable airways obstruction.

JAMA | Original Investigation

Reevaluation of Diagnosis in Adults With Physician-Diagnosed Asthma

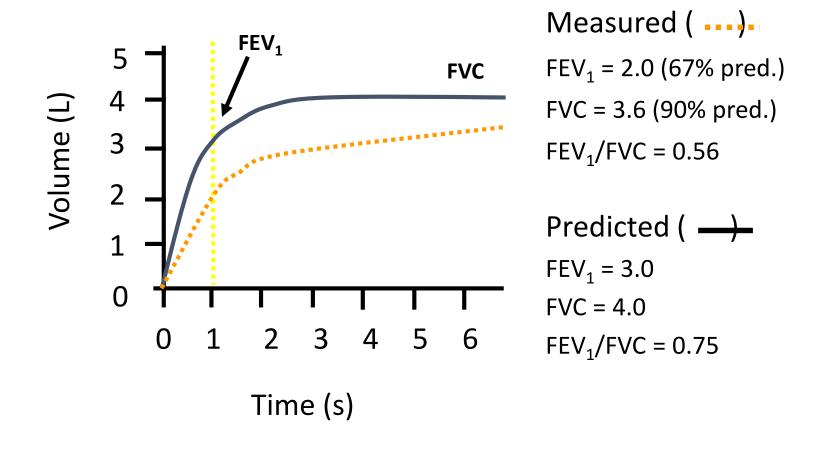
Shawn D. Aaron, MD; Katherine L. Vandemheen, MScN; J. Mark FitzGerald, MD; Martha Ainslie, MD; Samir Gupta, MD; Catherine Lemière, MD; Stephen K. Field, MD; R. Andrew McIvor, MD; Paul Hernandez, MD; Irvin Mayers, MD; Sunita Mulpuru, MD; Gonzalo G. Alvarez, MD; Smita Pakhale, MD; Ranjeeta Mallick, PhD; Louis-Philippe Boulet, MD; for the Canadian Respiratory Research Network

Subjects underwent extensive diagnostic algorithm including a one year follow-up without treatment to rule out current asthma.

JAMA. 2017;317(3):269-279. doi:10.1001/jama.2016.19627

Table 1. Baseline Characteristics of Individuals Whose Diagnosis of Current Asthma Was Confirmed or Ruled Out (continued)

Characteristic	Current Asthma		
	Confirmed (n = 410)	Ruled Out (n = 203)	Absolute Difference (95% CI) ^a
Patients with symptoms as assessed using ECRHS, No. (%)			
During past 12 mo			
Dyspnea	354 (86.3)	157 (77.3)	9.0 (2.4 to 15.6)
Wheeze	337 (82.2)	137 (67.5)	14.7 (7.3 to 22.1)


Figure 3. Adjusted Odds Ratios and Absolute Risk Differences for Determinants of Current Asthma

	Patients With Asthma Confirmed, No./Total No. (%)	Patients With Asthma Ruled Out, No./Total No. (%)	Absolute Risk Difference (95% CI)	Odds Ratio (95% CI)	Decreased Risk of Current Asthma Asthma	P Value
Age at diagnosis (per year)			-0.19 (-0.60 to 0.22)	0.99 (0.96 to 1.02)	•	.41
Diagnosis by a specialist	142/317 (44.8)	52/144 (36.1)	5.95 (-2.84 to 14.74)	1.37 (0.85 to 2.21)	-	.20
Airflow testing done in community at diagnosis	177/317 (55.8)	63/144 (43.8)	10.93 (2.39 to 19.48)	1.79 (1.13 to 2.85)		.01
Daily use of asthma medications	163/317 (51.4)	59/144 (41.0)	8.70 (0.45 to 16.94)	1.63 (1.04 to 2.55)		.03
FEV ₁ % predicted (per increase of 1%))		-0.80 (-1.02 to -0.58)	0.95 (0.94 to 0.97)	•	<.001
Dyspnea within 12 mo of study entry	269/317 (84.9)	111/144 (77.1)	-2.56 (-14.93 to 9.82)	0.87 (0.47 to 1.60)		.64
Wheeze within 12 mo of study entry	261/317 (82.3)	92/144 (63.9)	19.11 (8.17 to 30.05)	2.57 (1.50 to 4.39)		.001
AQLQ mean total score (per 1-point in	ncrease)		-1.38 (-5.56 to 2.80)	0.90 (0.71 to 1.15)	-	.40
				0.1	1.0 Odds Ratio (95% CI)	10

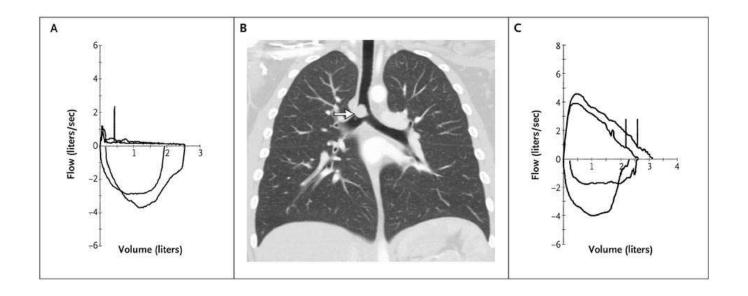
To confirm asthma:

- Bronchodilator response; how much is enough? 15% improvement in FEV1
- Peak flow variability; how much is enough? 20% within day variability
- Methacholine bronchoprovocation; *drop in FEV1 of 20% in subjects with normal spirometry.*

Spirometry – Volume/Time Curve

Asthma more likely if:

- If present in direct family members
- History of infantile eczema
- Allergy to indoor aeroallergens such as dust mite, pets, cockroach
- Female
- Typical triggers: *exercise in cold air (running for bus at -25 Celsius)
 - *laughter
 - *new pet


• However, but poor LRs; not very helpful in the individual patient

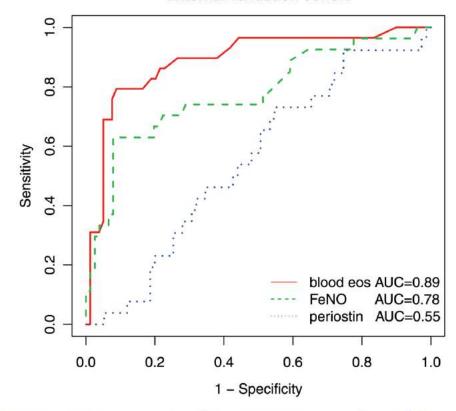
Common causes of dyspnea other than asthma:

- Hyperventilation
- Anemia
- Heart disease
- Anxiety
- Deconditioning

Causes of wheeze other than asthma:

- Obesity
- Vocal cord dysfunction (Inducible Laryngeal obstruction)
- Upper airway tumour
- Airway tumour or foreign body
- Bronchomalacia

Differential diagnosis of a persistent cough


- Sinus disease with post-nasal drip (chronic upper airway cough)
- GERD
- VCD
- ACEi

Auxiliary testing

• FeNO (expired nitric oxide) > 50

• Blood eosinophils (300 or 4%)

External validation cohort

Figure 1 Receiver operating characteristics curve analyses of the sensitivity and the specificity of blood eosinophils (eos), FE_{NO} and serum periostin (in-house) for the diagnosis of eosinophilic inflammation. AUC, area under the curve.

To cite: Wagener AH, de Nijs SB, Lutter R, et al. Thorax 2015;70:115–120.

Mrs L.

- 34yo woman with? asthma
- Migraines: can take Propanolol?
- Hx of recurrent bronchitis
- SOBOE x 1 year, coughs & wheezes if runs, unable to train, air hunger
- Allergy to pets & dust (no pets @ home)
- Chronic rhinitis
- FEV1: 2.69 normal
- PBE: 100
- FeNO: 11
- Given Ventolin pre-exercise, Nasonex + f/u with Metha

Mrs L.

• Metacholine: negative

• Symptoms likely hyperventilation: booked for breathing exercises

FeNO along with blood and spirometry were indicator of low asthma probability (confirmed with Metacholine) despite symptoms being suggestive.

Box 3-5A

Adults & adolescents 12+ years

STEP 1

As-needed

ICS-formoterol Low dose ICS

taken whenever

SABA is takent

low dose

Personalized asthma management:

Assess, Adjust, Review response

Symptoms Exacerbations Side-effects Lung function Patient satisfaction

Confirmation of diagnosis if necessary Symptom control & modifiable risk factors (including lung function) Comorbidities Inhaler technique & adherence Patient goals

Treatment of modifiable risk factors & comorbidities Non-pharmacological strategies Education & skills training Asthma medications

STEP 3

Low dose

ICS-LABA

Medium dose

ICS+LTRA #

As-needed short-acting β_2 -agonist (SABA)

ICS, or low dose

STEP 4

Medium dose **ICS-LABA**

phenotypic assessment ± add-on therapy, e.g.tiotropium anti-IgE, anti-IL5/5R,

STEP 5

High dose

ICS-LABA

Refer for

High dose ICS, add-on tiotropium, or add-on LTRA # side-effects

Add low dose OCS, but consider

anti-IL4R

As-needed low dose ICS-formoterol ‡

Asthma medication options:

Adjust treatment up and down for individual patient needs

PREFERRED CONTROLLER

to prevent exacerbations and control symptoms

> Other controller options

PREFERRED RELIEVER

Other reliever option

STEP 2

Daily low dose inhaled corticosteroid (ICS), or as-needed low dose ICS-formoterol *

REVIEW ONSE

NSSESS.

ADJUST

Leukotriene receptor antagonist (LTRA), or low dose ICS taken whenever SABA taken †

As-needed low dose ICS-formoterol *

Off-label; data only with budesonide-formoterol (bud-form)

† Off-label; separate or combination ICS and SABA inhalers

‡ Low-dose ICS-form is the reliever for patients prescribed bud-form or BDP-form maintenance and reliever therapy

Consider adding HDM SLIT for sensitized patients with allergic rhinitis and FEV >70% predicted

GINA 2019 – landmark changes in asthma management

- For safety, GINA no longer recommends SABA-only treatment for Step 1
 - This decision was based on evidence that SABA-only treatment increases the risk of severe exacerbations, and that adding any ICS significantly reduces the risk
- GINA now recommends that all adults and adolescents with asthma should receive symptom-driven or regular low dose ICS-containing controller treatment, to reduce the risk of serious exacerbations
 - This is a population-level risk reduction strategy, e.g. statins, anti-hypertensives

Trial of Therapy

Budesonide/Formoterol 200mcg; one inhalation as needed.

QUESTIONS?

